
Introduction

Topography, which reflects the variation in elevation 
of the earth’s surface, has many influences on the 

allocation of energy and materials [1]. Microtopography 
which describes the topography on the fine scale also 
has direct impacts on vegetation and soil [2-3]. For 
example, microtopography can affect the diversity of 
vegetation, plant biomass, and chemical elements [4]. 
The concentration of soil nutrients such as N and P 
changes with variation of soil moisture, solar energy, 
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Abstract

Topography is important for soil nutrient loss and critical source area (CSA) identification. Previous 
studies have primarily used mass soil sampling to explore the relations between topography and soil 
nutrients (especially N and P) at the coarse scales. The relations at the microtopographic scale, however, 
remain unclear. This study integrated unmanned aerial vehicle (UAV) and satellite remote sensing  
(GF-2) data to create two new indices – NDVI(N) and NDVI(P). Results revealed more pixels with 
high NDVI(N) values distributed across low elevation difference grades in paddy land; however, this 
was reversed for dry land. There were more NDVI(P) pixels with large (small) values at high (low) 
elevation difference grades in the dry land (paddy land). In dry land, the average NDVI(N) was in the 
range of 0.25-0.33, and NDVI(P) was in the range of 0.47-0.61 for each elevation grade. In paddy land, 
the average NDVI(N) and NDVI(P) values for each elevation grade were in the range of 0.24-0.32 and  
0.31-0.43, respectively. Microtopography can redistribute N and P spatially within the soil because 
it changes the direction of flow from irrigation and rainfall and of sediment flow from erosion. 
Furthermore, soil N and P accumulate simultaneously in the soil of agricultural land. 
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and humus content induced by microtopography [5-6]. 
Meanwhile, topography shapes the land cover, which 
is one of the most important data used to demonstrate 
the effects of land use changes, especially human 
activities [7-8]. Land use maps can be produced via 
different methods on satellite images [9]. Consequently, 
microtopography has received considerable attention 
around the world because of its substantial influence on 
agricultural management, which is manifested through 
its critical roles in soil erosion and the loss of soil 
nutrients (e.g., N and P) [10-11].

Microtopography influences the loss of soil N and 
P of agricultural land through three principal aspects: 
runoff confluence, soil erosion, and nutrient loss 
route [12-13]. Runoff affected by microtopography 
can change the magnitude of the losses of dissolved 
N and P, especially in steep areas [5, 14-15]. Runoff 
changes water stress, which is an important factor 
in agricultural production [16-18]. Soil erosion is 
a complex process that can directly and powerfully 
increase particulate P loss [19-20], and microtopography 
constitutes a key parameter in soil erosion calculations 
[21]. Investigation of N and P loss routes is an area of 
active research because critical source areas (CSAs) can 
be detected if such routes are known [22-23]. Thus, it 
is necessary to determine the spatial distributions of 
N and P at different elevations. Thus, we first need to 
precisely describe the local microtopography using 
high spatial-resolution land-elevation data derived from 
a digital surface model (DSM) and a digital elevation 
model (DEM) [24]. Knowing the spatial distributions 

of N and P at different elevations is fundamental to 
establishing how microtopography might influence their 
loss processes in agricultural land.

Traditional methods used to explore topographic 
influence on soil N and P loss processes include soil 
sampling based on geostatistics, model simulation 
driven by DEMs, and photogrammetric soil surface 
measurements [25-27]. Mass soil sampling incorporated 
with surveying, which is appropriate for field-scale or 
farm-scale studies, is a method that can derive precise 
measurements both of soil nutrient concentrations 
and of land elevations [28-29]. At the watershed and 
regional scales, ecohydrological models combined 
with DEMs are often used [30-31], and the DEMs are 
usually derived from remote sensing data, e.g., the 
Shuttle Radar Topography Mission [32]. Close-range 
photogrammetry integrated with plot experiments is 
also used to explore the relation between soil loss and 
topography. However, despite obtaining very accurate 
elevation information, translating the findings derived 
using this technique to larger scales is difficult because 
of the small spatial coverage. At the same time, the 
methods described above cannot meet the requirements 
of such work because they are too complex or data 
collection is too difficult. Recently, the development 
of unmanned aerial vehicles (UAVs) has offered new 
opportunities for quantifying land elevation precisely. 
UAVs not only provide cost-efficient solutions but 
also yield remote sensing data at the sub-decimeter 
scale spatial resolution and with high spatial accuracy  
[33-35]. In this study, we aimed to obtain high spatial-

 
Fig. 1. Study area showing the eight UAV control flying areas and sampling points in 2016 at the Bawujiu Farm.
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resolution elevation data precisely and easily to explore 
how soil N and P are distributed at different elevations 
and to determine their loss routes.

This research had three primary objectives: 1) to 
explore the relationship between microtopography 
and soil N and P, 2) to determine the laws governing 
the spatial distribution characteristics of soil N and P 
at microtopographic scale, and 3) to create two new 
indices to represent the spatial distributions of soil N 
and P based on GF-2 satellite and UAV data.

Material and Methods

Study Domain

Bawujiu Farm (43°18′-48°50′N, 133°50′-134°33′E), 
covering an area of 1345 km2 and located in the 
northeast of the Sanjiang Plain in China (Fig. 1), 
served as the experimental area for this study. As one 
of the national commercial crop bases, Bawujiu Farm 
has excellent natural conditions for agriculture and a 
long history of development [23]. Annual precipitation 
ranges from 500 to 600 mm, and the annual average 
temperature is 1.9ºC. The climate is humid with a mid-
humid continental climate type. Most of Bawujiu Farm 
is flat and homogenous arable land. There are seven soil 
types at this farm: calcaric fluvisols, eutric planosols, 
haplic chernozems, molic gleysols, plinthic lnvisols, 
glossic chernozems, and chromic luvisols. 

As a reflection of its fertile soil and sufficient 
irrigation conditions, Bawujiu Farm has a long history 
of intensive agricultural development spanning more 

than 60 years. The original natural wetlands in this 
area were transformed to cultivated land and now there 
are few areas of wetlands left. Agricultural land and 
forests are the two major land use types on this farm, 
accounting for 91% and 7% of the total, respectively. 
Paddy land and dry land are the two leading arable land 
use types. As a national commercial grain production 
base, large amounts of fertilizers have been used at 
the farm over the years because of the large national 
demand for crops. Therefore, nonpoint source pollution 
has become a major concern at this farm, e.g., large 
amounts of P accumulated within the soil would induce 
leaching of P [11].

At Bawujiu Farm, the Liandui (LD) is the basic 
management unit. In September 2016, eight UAV 
control flying areas were implemented in six LDs: 
LD11_1 (i.e., the 1st control flying area in the 11th LD), 
LD11_2, LD11_3, LD17, LD19, LD22, LD30, and LD35  
(Fig. 1). LD17 and LD19 are dry land areas, and the 
others are paddy land areas. These two land use 
types have different irrigation regimes and varying 
topographic conditions. Dry land at the farm is irrigated 
by rain, and its surface is not particularly flat, whereas 
paddy land is irrigated using well irrigation facilities 
and channels, and its surface is generally flat. Soil 
sampling was performed in April 2016 to obtain 
measurements of soil N and P concentrations (Fig. 1).

 

Framework of this Study

Four main steps were undertaken to explore the 
relations between microtopography and soil N and P 
concentrations (Fig. 2). The first step involved retrieving 

Fig. 2. Flow chart of the study process. 
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microtopographic data using remote sensing imagery 
obtained by the UAV. Then, these microtopographic 
data were divided into 10 elevation differences to 
describe fine-scale topographic variations. 

The second step was to obtain soil N and P 
concentrations using the EcoHAT model. Two main 
calculation processes at different spatial scales were 
carried out. One, the model obtains soil N and P 
concentrations at a 1-km spatial resolution because the 
in-situ sample grid is of 1 km. Two, for matching the 
higher spatial resolution of UAV and GF-2 data, soil N 
and P concentrations from the model at 10 m were also 
calculated.

The third step was to create a normalized 
difference vegetation index for N (NDVI(N)) and a 
normalized difference vegetation index for P (NDVI(P)) 
to downscale the raster data set of soil N and P 
concentrations and to explore the relationship between 
soil N and P concentrations at the microtopographic 
scale. The NDVI data were retrieved by satellite remote 
sensing (GF-2). 

The fourth step involved exploring the answers to 
the two questions concerning the relationship between 
the elevation difference and soil N and P concentrations 
and the relationship between soil N and P at the 
microtopographic scale.

 

Data

Satellite Remote Sensing Data and UAV Data

The satellite remote sensing data (Table 1) used in 
this study to obtain the NDVI(N) and the NDVI(P) 
were retrieved by the GF-2 satellite, which is a new-
generation high spatial-resolution satellite from China 
with sensors operating in panchromatic and MSS (i.e. 
red (R), green (G), blue (B), and NIR) spectral channels. 
The spatial resolutions of the panchromatic sensor and 
the MSS are 1 and 4 m, respectively. The platform 
altitude is 631 km, the swath width is 45 km (two 
cameras combined), and the visit cycle is 5 days. We 
used data acquired on May 22, 2016 (inclination angle: 
±35°), and 11 images covered the entire study area.

The aerial remote sensing UAV used in this study 
exhibited better spatial and temporal resolutions than 
the satellite platform (Fig. 3). The UAV comprises five 
core components: four airscrews, a control center and 
global positioning system (GPS), a camera holder, an 
engine, and an optical camera. The built-in GPS meant 
that the coordinates of each pixel could be obtained 
when acquiring images with the camera, which is how 
the DSM could be derived using the optical remote 
sensing images. Once the DSM had been obtained, the 
elevation difference could be easily calculated. 

Table 1 Aerial and satellite remote sensing data used in this study.

Space RS Sensor Sensor bands Swath width Spatial Reso-
lution

Visit  
cycle

Inclination 
angle Image N.

GF-2 Altitude = 631km
Solar Synch.

(Pan) 0.45~0.90µm
MSS = 4

(B)0.45~0.52µm
(G) 0.52~0.59µm
(R)0.63~0.69µm

(NIR) 0.77~0.89µm

45km
(Two 

cameras 
combined)

Pan = 1 m
MSS = 4 m 5d ±35° 11

RS: remote sensing; MSS: multispectral scanner; R: red; G: green; B: blue; NIR: near-infrared; N.: number; UAV: unmanned aerial 
vehicle; Pan: panchromatic; GF: Gao Fen satellite; Synch.: synchronous.

Fig. 3. The UAV and its core components.
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Detailed information regarding the core components 
and imaging capabilities of the UAV used in this 
research is presented in Table 2. The spatial resolution 
of the UAV is 0.042 m with a 100-m sensor altitude and 
a 171 × 128 m swath width. The UAV sensor operates in 
the R, G, and B spectral channels. The UAV was flown 
on September 26, 2016, and 360 images were acquired. 
The inclination angle was orthogonal. According to the 
performance of the UAV, high spatial-resolution images 
were obtained, from which the elevation differences in 
the study area were calculated.

Soil N and P Data 

To obtain the spatial concentrations of soil N and P, 
a single soil sampling campaign was undertaken in late 
April 2016 at the Bawujiu Farm (see Fig. 1). Overall, 
141 soil samples were obtained during the sampling 
campaign. In the laboratory, prior to air-drying at 
25ºC, plant and organic residue and all other visible 
extraneous material in the soil samples were removed. 
The dried soil was ground in an agate mortar and 
then passed through a 2-mm nylon sieve to obtain a 
sample suitable for chemical analysis. The total soil N 
concentration was determined using a CHN elemental 
analyzer (Euro Vector S.P.A EA3000, Milan, Italy) 
at a burning temperature of 900ºC. The total soil P 
concentration was determined using the inductively 
coupled plasma atomic emission spectrometry method 

(ICP-OES, IRIS Intrepid II XSP, ThermoElectron, 
USA) after the samples had undergone mixed acid (HF, 
HNO3, and HCLO4) digestion [36].

Creation of NDVI(N) and NDVI(P)

NDVI is an advantageous indicator for the 
concentrations of soil N and P and their variations 
[37]. NDVI and soil N concentrations have a positive 
correlation, i.e., a higher NDVI value is associated 
with a larger amount of N in the soil. In addition, 
NDVI values are also sensitive to the efficiency of N 
use by vegetation [38-39]. Similarly, NDVI and soil P 
concentrations also have a positive correlation, whereby 
higher NDVI values suggest higher soil P concentrations 
[40-42].

In this study, two new indices, NDVI(N) (Eq. 1) and 
NDVI(P) (Eq. 2), were formed to represent the spatial 
distribution of soil N and P, respectively: 

 (1)

  (2)

...where NDVI(Ni,j) and NDVI(Pi,j) are the pixel values 
of the NDVI(N) and NDVI(P) indices, respectively; Ni,j 
and Pi,j are the pixel values of the spatial distribution 
data of soil N and P, respectively; and i and j are the 
specified row and column numbers, respectively. These 
two indices allow downscaling of the coarse data of 
soil N and P via interpolation.

Based on the measurements collected by the GF-2 
sensor, the NDVI could be calculated as follows:

                   (3)

...where ρNIR is the fraction of emitted near-infrared 
(NIR) radiation returned from the vegetation and ρRed  
is the fraction of emitted red radiation returned from the 
vegetation [43].

Soil N and P Calculation Using 
the EcoHAT Model

The EcoHAT model [11, 20, 23, 44] includes two 
major processes, the soil N and P-cycle and the plant N 
and P-cycle. The soil N cycle includes nitrogen in the 
rainfall model, nitrogen fertilization model, nitrogen 
mineralization and decomposition model, nitrogen 
nitrification and ammonia volatilization model, and 
nitrogen denitrification model. A fertilization model, 
a mineralization and a decomposition model, and an 
inorganic P absorption model are integrated to describe 
the soil P-cycle process. The net primary productivity 
(NPP) simulation model, a vegetation production 
distribution model, a vegetation N and P absorption 
model, and a vegetation litter model are coupled to 

Table 2. Details of aerial remote sensing data and the UAV 
platform used in this study.

Name of flying parameters Value of flying parameters

UAV type Phantom-3-pro

Camera type FC300X

Sensor type Sony Exmor R CMOS

Camera pixels 40003000

Max aperture f/2.8

Camera focal length 20 mm

Field of view (FOV) 94°

Max flight height 500m

Flying weight 1280g

Max horizontal speed 16 m/s

Max flying duration time 23 min

Working temperature 0ºC – 40ºC

Sensor bands 3 (R,G,B)

Swath width 171128 m

Altitude 100 m

Resolution 0.042 m

Inclination angle Orthogonal
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Table 3. Functions and parameters in the N and P model.

No. Model Name Equation References

1 N in Rainfall SWAT model [45]

2 N Fertilization SWAT model [45]

3 N Mine & Dec. SWAT model [45]

4 N Nit.&Am.Vol. SWAT model [45]

5 N Denitrification Denitrification Model [46]

6 P Fertilization SWAT model [45]

7 P Mine & Dec. [47]

8 Inorganic  P absorption SWAT model [45]

9 NPP Simulation CASA model [48]

10 Vegetation
Production distribution ForNBM model [49]

11 Nutrient absorption ForNBM model [49]

12 Vegetation Litter ForNBM model
[49]

Annotation: Nrain: Nitrate added by rainfall(kg N·ha); RNO3:The concentration of nitrogen in the rain(mg N·L); Rday: The amount of 
precipitation on a given day(mm); NO3fert: The nitrate added in the soil comes from fertilization(kg N·ha); fertmin N: The percentage 
of mineral N in fertilization(%);fertNH4: The percentage of mineral ammonia nitrogen in fertilization(%);NH4fert: The ammonia ni-
trogen added in the soil comes from fertilization(kg N·ha); fert: The amount of fertilization(kg N·ha); orgNfrsh, fert: The fresh organic 
N in soil comes from fertilization(kg N·ha); fertorg N: The percentage of organic N in fertilization(%);orgNhum, fert: The humus organic 
soil N comes from fertilization(kg N·ha); Nminf,ly: The nitrogen mineralized from the fresh organic N pool(kg N·ha); : The residue 
decay rate constant; Ndec,ly: The nitrogen decomposed from the fresh organic N pool(kg N·ha); Nnit,ly: The amount of nitrogen con-
verted from NH4 to NO3 in layer ly(kg N·ha); Nvol,ly: The amount of nitrogen converted from NO3 to NH4 in layer ly(kg N·ha); frnit,ly: 
The estimate fraction of nitrogen lost by nitrification; frvol,ly: The estimate fraction of nitrogen lost by volatilization; : The amount of 
ammonium convert via nitrification and volatilization in layer ly(kg N·ha); Da: The actual denitrification rate(kg N·m-2·d-1); Dp: The 
potential denitrification rate(kg N·m-2·d-1); fN: The nitrate attenuation function in soil[0-1]; fS: The water attenuation function in soil; 
fT: The temperature attenuation function in soil; fpH: The acid-base property attenuation function in soil; APAR(x, t): Plant absorbed 
photosynthetically active radiation from pixel x in day t(MJ·m-2); e(x, t): The real efficiency of radiation utilization(gC·MJ-1); NPP: 
Net Primary Productivity(gC·m-2); FB: NPP the leaf obtain(g C·m-2); RLA_W: Biomass in 1 m2 leaf(g· m-2);: Leaf area increment per 
month(m-2); RB: The NPP root obtain(gC·m-2); Kra: Return coefficient of leaf nutrient, constant; WB: The NPP limb obtain(g C·m-2); 
Xavail: The plant available amount of element X(X = P)(g·m-2); Xdem: The plant demand amount of element X(X=P)(g·m-2); Llit: Leaf 
wither amount(g C·m-2); afh: Deciduous species wither threshold; afs: Evergreen species wither threshold; afr: Root wither threshold; 
afw: Limb wither threshold; afl: Herbage wither threshold; Tair: Air temperature(ºC); Tfall: The threshold temperature of Deciduous 
species(ºC); Rlit: The root wither amount(g C·m-2); Wlit: The limb wither amount(gC·m-2);  Llit: Herbage wither amount(g C·m-2); 
FL: The NPP herbage obtain(g C·m-2); Tfall: The threshold temperature of herbage species(ºC); Pslution, fert: The dissolved soil P comes 
from fertilization(kg P·ha); fertmin P: The percentage of mineral P in fertilization(%); orgPfrsh, fert: The fresh organic P in soil comes 
from fertilization(kg P·ha); fertorg P: The percentage of organic P in fertilization(%);
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describe the vegetation N- and P-cycle processes. All 
the arithmetical equations are enumerated in Table 3.

The main input data include multisource remote 
sensing data and production, meteorological data, 
and statistical data [23]. In this study, two calculation 
processes with different spatial scales were carried out. 
First, the model obtains the soil N and P concentrations 
at a 1 km spatial resolution because the in-situ sample 
grid is of 1 km. Second, for matching the higher 
spatial resolution of UAV and GF-2 data, soil N and 
P concentrations from the model at 10 m were also 
calculated. 

The creation of the NDVI(N) and the NDVI(P) 
allowed data downscaling. An NDVI at 1-m resolution 
can describe vegetation and soil nutrient information in 
detail and provide spatial heterogeneity. To obtain an 
NDVI with 1-m resolution from the GF-2 data, an image 
mosaic was created. Then, image fusion was applied to 
the multispectral scanner (MSS; 4-m resolution) and 
panchromatic (1-m resolution) data retrieved by the 
GF-2 satellite (Fig. 2). Output of the EcoHAT model 
was a raster data set with a 10-m spatial resolution. 
This resolution was selected based on the mass soil 
sample numbers and the homogeneity of the land 
surface. For matching the resolution of the NDVI, the 
interpolation data were resampled at a 1-m resolution. 
Based on the relations between NDVI and soil N and 
P, NDVI(N) and the NDVI(P) were obtained via spatial 
multiplication in ArcGIS10.2 (Fig. 2). Soil N and P were 
also downscaled from 10- to 1-m resolution to match 
the NDVI data. After spatial multiplication between 
the NDVI and the nutrient data, the two new indices 
containing information on vegetation and soil nutrients 
were produced at refined spatial resolution (i.e., 1 m).

Fine-Scale Elevation Grading 

The elevation difference as microtopographic 
information was calculated from the UAV images that 
also contained elevation information (Fig. 3). First, the 
overlapped UAV images were processed using PIX4D 
software (https://pix4d.com/). Then, a digital orthophoto 
model, DSM, and a point cloud image were obtained. 
Second, the DEM was calculated from the DSM using 
the minimum value filtering algorithm (Eq. 4). The 
height raster of the surface features was produced by 
subtracting the DEM from the DSM, as follows:

  (4)

...where DMEi,j is the pixel value after filtering; i and j 
are the specified row and column numbers, respectively;  
Ii,j is the value of the pixel; M is the maximum row or 
column number; and N is a positive odd number in the 
form N × N, which refers to the size of the filtering 
window. Third, the elevation difference was calculated 
by subtracting the minimum elevation from the DEM in 
each control flying area (Eq. 5):

              (5)

...where EDi,j refers to the elevation difference in each 
pixel and MEi,j refers to the pixel that has the minimum 
elevation.

To explore the impact of microtopography on soil 
N and P concentrations and to take full advantage of 
the high-resolution data from the UAV, the elevation 
differences were graded into 10 groups with 0.02-m 
increments, and the matched NDVI(N) and NDVI(P) 
were extracted at the same time. The 10 groups of 
elevation difference included 0.02–0.04, 0.04–0.06, 
0.06–0.08, 0.080–0.10, 0.10–0.12, 0.120–0.14, 0.14–0.16, 
0.16–0.18, 0.18–0.20, and LT0.20 m (larger than 0.20).

 
Data Analysis

Spatial correlation analysis was applied in this study 
to explore the relationships between elevation difference 
and both NDVI(N) and NDVI(P). The formulas used 
for the calculation of covariance and correlation were 
as follows:

               (6)

                       (7)
...where Covi,j and Corri,j are the covariance and 
correlation of a set of bands; Z is the value of a cell; 
i and j are the layers of a stack; μ is the mean of each 
layer; N is the number of the cell; k denotes a particular 
cell; and δ is the standard deviation of a layer. 

Results and Discussion 

Validation of UAV Data and Model Performance 

Data used to validate the DEM derived from the 
UAV were collected from 22 ground control points 

Table 3. Continued.

orgPhum, fert: The humus organic soil P comes from fertilization(kg P·ha); Pmina: The phosphorus mineralized from the humus active 
organic P pool(kg P·ha); orgPact: The amount of phosphorus in the active organic pool((kg P·ha)); :  The rate coefficient for miner-
alization of the humus active organic nutrients; : The nutrient cycling temperature factor; : The nutrient cycling water factor; Psol/act, 

ly: Amount of phosphorus transferred between the active and stable mineral pools(kg P·ha); Pslution, ly: The amount of phosphorus in 
solution(kg P·ha); minPact, ly: The amount of phosphorus in the active mineral pool(kg P·ha); pai: The phosphorus availability index.
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(GCPs) (Fig. 4) distributed uniformly at the experiment 
station (28,000 m2) and Bawujiu Farm (Fig. 4). To 
obtain the real elevations of the GCPs, real-time kinetic 
(RTK, ZHD-V30-GNSS-RTK) survey technology was 
employed (Fig. 4). The GCP values were compared 
with the DEM values retrieved from the UAV images. 
The DEM values comprised digital numbers of the 
pixels in which the GCPs were located, which were 
extracted using the spatial analysis tool in ArcGIS 10.2. 
The results showed the DEM derived from the UAV 
images was valid and could be used in this research 
(Fig. 4). The average value of the RTK survey data was  

587.14 m, and the average value of the UAV data 
was 587.36 m; the standard deviations of the RTK 
survey data and the UAV data were 1.05 and  
1.07 m, respectively. The R2 value between the surveyed 
elevation and the DEM value from the UAV data was 
0.95, and the standard error was 0.02 m. 

We also validated the simulation results of the 
model at a 1-km spatial resolution (Fig. 5) by using the 
sample data in the Bawujiu Farm. The sampling points 
were spatially unfolded according to their geographic 
coordinates and then overlaid on the simulation 
results. The pixel values where the sample points were 

Fig. 4. Ground control points (GCPs) and validation of the DEM derived from UAV data.

Fig. 5. The validation results of EcoHAT-N and EcoHAT-P.
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located were extracted by the spatial analysis tool in 
ArcGIS10.5. 

The determination coefficients were used to evaluate 
the simulation results from EcoHAT (Fig. 5, N left; 
P right). The value of the determination coefficient 
between the simulated N concentration in the soil 
from EocHAT and the measured N concentration was 
0.76. For P, the value of the determination coefficients 
between the simulated P concentration in the soil from 
EocHAT and the measured P concentration was 0.75. 
The value of R2 from N was better than that from P 
because there were more reactive values from the P 
simulation results in this area. But the root mean square 
error (RMSE) of the validation of P was 0.089 and that 
of the validation of N was 0.528. It is better to analyze 
P than nitrogen because there are more values that 
drift away from the 1:1 line in the validation of N than 

those in the validation of P. In other words, the upper 
validation of the model’s simulation results show that 
the model is stable and meets the requirements of this 
study. 

Spatial Distribution of Elevation Difference 
and the Two Indices

The spatial distribution of the elevation difference, 
NDVI(N), and NDVI(P) in the eight UAV control flying 
areas are presented in Fig. 6. NDVI(N) and the NDVI(P) 
display similarity in their spatial distribution, whereas 
the elevation differences in the eight areas are different. 
In arable land, irrespective of whether land was dry 
or paddy, the elevation differences were very small, 
except when related to artificial cement roads, banks of 
irrigation ditches, and big ridges in the land. In LD11_3 
and LD17, the maximum elevation difference reached 
7.86 and 8.56 m, respectively. This is because there are 
tall coniferous forests growing on hills in these two 
LDs. In the other six LDs, the elevation differences are 
no greater than 2.51 m. 

The spatial distributions of the two indices show 
similar characters, although their ranges differ in the 
forested land. Furthermore, LD11_2, LD22, and LD 35 
were more similar spatially. The values of both indices 
are larger in LD17 than in LD11_3. Moreover, the 
NDVI(N) and NDVI(P) values are substantially higher 
in ditches than in flat arable land, although in artificial 
ditches constructed with cement, the values are lower 
(LD11_1, LD11_3, and LD17). Compared with the high 
spatial similarity between these two indices, the spatial 
texture between the two indices and the ED represent 
more differences. The ED images display more detailed 
land surface information than the images of the indices. 
At the same time, the digital number range of the ED is 
larger than the two indices.

Spatial correlations of NDVI(N) and NDVI(P), 
elevation difference and NDVI(N), and elevation 
difference and NDVI(P) were calculated using Eq. (7) 
(Table 4). A high correlation was observed between 
NDVI(N) and NDVI(P), consistent with their similar 
spatial distributions (Fig. 6). The maximum value of 
0.89 was obtained in LD11-2, and the minimum value of 
0.69 was obtained in LD11_3. Dry land and paddy land 
show differences in the relationship with NDVI(N) and 
NDVI(P), i.e., paddy land presents a higher correlation 
with the indices than dry land. In comparison with  
the correlation between these two indices themselves, 
their correlations with elevation differences are 
lower, i.e., most are negative except for LD17 and 
LD19. Therefore, elevation difference has a negative 
correlation with the spatial distribution of NDVI(N) 
and NDVI(P) in paddy lands, indicating that soil N 
and P concentrations have negative relationships with 
microtopography in this land type. However, in dry 
land, the spatial correlations were positive, which 
denotes that soil N and P concentrations have negative 
relationships with microtopography. 

Fig. 6. Spatial distribution of elevation difference, NDVI(N), and 
NDVI(P) in the eight UAV control flying areas.
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Statistical Analysis of Soil N and P Concentrations 
at Microtopography Scale

Numerical regression analyses between NDVI(N) 
and NDVI(P) were applied using all the pixels in the 
eight UAV control flying areas (Fig. 7). There were 
118,529 pixels in total that could reasonably accurately 
describe the relationship between NDVI(N) and 
NDVI(P) at the microgeographic scale. The coefficient 
of determination (R2) and RMSE were 0.75 and 0.08, 
respectively, suggesting a good correlation. However, 
NDVI(P) has a more standard Gaussian distribution 
than NDVI(N). The range of NDVI(N) and NDVI(P) 
values were from 0 to 1. Most NDVI(N) values were 
located within the range 0–0.6, while most NDVI(P) 
values were located within the range 0–0.83, and a 
stronger correlation could be observed within these 
ranges. 

We observed a positive correlation between soil 
N and P concentrations in agriculture land at the 
microtopographic scale (Fig. 7). Analysis of the 
two indices, NDVI(N) and NDVI(P) and the use of 
UAV data as a “magnifying glass” produced a clear 
conclusion regarding the relationship between soil N 
and P concentrations at the fine scale. We calculated 
the correlation between soil N and P and found the 
coefficient of correlation value was very low; however, 
the coefficient of determination between NDVI(N) and 
NDVI(P) was 0.76. A number of explanations could 
account for this finding. First, the NDVI could directly 
reflect soil N [50-51] and P concentrations [52-53] and 
the nutrient absorption efficiency of vegetation [38]. 
Based on this, the NDVI(N) and the NDVI(P) could 
also indicate the concentration and variation of soil N 
and P concentrations, respectively. Second, analysis at 
the microtopographic scale provided an opportunity to 
describe soil nutrient information. The UAV provided 
high spatial-resolution topographic data [33], which 
allowed us to derive information about the status and 
variation of soil nutrients more precisely and thus to 
generate statistical results with improved accuracy. 

Meanwhile, the overall range was small because of the 
short cruising time of the UAV and the high resolution. 
In the small study area, the variation of topography and 
soil nutrients was not significant. From Tobler’s first 
law of geography, spatially closer values are related 
more strongly than more distant ones [54]. Third, 
intensive agricultural activities also contribute to this 
relationship. Intensive agricultural activities lead to 
artificial accumulation of N and P in the soil, especially 
P, which is generally limited under natural conditions 
[21].

Relationships between Elevation Difference 
and Soil N and P

Quantitative statistical distributions of NDVI(N) 
values at 10 elevation difference grades in the eight 

Table 4. Spatial correlations of NDVI(N) and NDVI(P), elevation difference and NDVI(N), and elevation difference and NDVI(P).

NDVI(N/P) S-C NDVI(N)/ED S-C NDVI(P)/ED Correlation

N._N_11_1 0.71 N._N_11_1 -0.19 N._P_11_1 -0.21

N._N_11_2 0.89 N._N_11_2 -0.35 N._P_11_2 -0.33

N._N_11_3 0.69 N._N_11_3 -0.18 N._P_11_3 -0.19

N._N_17 0.70 N._N_17 0.23 N._P_17 0.29

N._N_19 0.76 N._N_19 0.30 N._P_19 0.44

N._N_22 0.81 N._N_22 -0.36 N._P_22 -0.38

N._N_30 0.66 N._N_30 -0.15 N._P_30 -0.14

N._N_35 0.79 N._N_35 -0.22 N._P_35 -0.29

Annotation: S-C: Spatial Correlation; N.: NDVI; ED: elevation difference.

Fig. 7. Numerical regression analysis of the eight UAV control 
flying areas.



Relations between Microtopography and Soil... 267

UAV control flying areas are presented in Fig. 8 and 
Table 5. In paddy land, there are more pixels with high 
NDVI(N) values distributed at low elevation difference 
grades (i.e., ED1, ED2, ED3, and ED4), whereas in 
dry land, there are more pixels with low NDVI(N) 
values distributed at low elevation difference grades. 
This indicates that the soil of cultivated land with low 
elevation difference has more N in paddy land, whereas 
the converse is true in dry land. The eight areas were 
classified as dry land or paddy land because these are 
the two major agricultural land use types. However, 
they also have different irrigation regimes and varying 
topographic conditions. Dry land is irrigated by rain, 
and its surface is not particularly flat, whereas paddy 
land is irrigated using well irrigation facilities and 
channels, and its surface is generally flat. 

Although more pixels with higher NDVI(N) values 
are distributed at low elevation difference grades, 
irrespective of whether the land is dry or paddy, the 
distribution of NDVI(N) in the two land use types is 
different. In dry land, the variation of the distribution 
of NDVI(N) values is uniform across different 
elevation grades; the average NDVI(N) value of each 
grade is 0.45-0.53. In paddy land, more pixels with 
high NDVI(N) values are distributed in low elevation 
difference grades, which indicates that the soil N 
content increases as the elevation of the cultivated land 
decreases. The average NDVI(N) values are in the 
range 0.44–0.52 mg/kg. The elevation difference grade 
of 0.08–0.10 m is the threshold, i.e., there is more N in 
the paddy land soil at elevation difference grades lower 
than this threshold.

The NDVI(P) values at 10 ED grades in the eight 
UAV control flying areas are presented (Fig. 9). There 
are more pixels with high values at high ED grades 
in dry land and more pixels with small values at low 
ED grades in paddy land (Table 4). Although the 

distribution of NDVI(P) values is obviously different 
for the two cultivated land use types, the variation 
law of the distribution of NDVI(P) values in each land 
use type is clear and significant. In dry land, there is 
more P content when the ED increases; the average 

Table 5. Statistics of pixel number in each elevation grade and average values of NDVI(N) and NDVI(P) in each grade in the two 
cultivated land types.

ED grade
(m)

Pixel N.
D.land

D.land
NDVI(N)

D.land
NDVI(P)

Pixel N.
P.land

P.land
NDVI(N)

P.land
NDVI(P)

ED1 (0.02-0.04) 19,273 0.44 0.48 37,663 0.25 0.36

ED2 (0.04-0.06) 8,440 0.45 0.50 15,429 0.26 0.37

ED3 (0.06-0.08) 5,006 0.46 0.53 7,777 0.26 0.37

ED4 (0.08-0.10) 3,077 0.47 0.56 3,644 0.25 0.37

ED5 (0.10-0.12) 1,982 0.47 0.54 1,932 0.22 0.32

ED6 (0.12-0.14) 1,288 0.49 0.57 1,011 0.28 0.38

ED7 (0.14-0.16) 963 0.49 0.59 701 0.27 0.39

ED8 (0.16-0.18) 744 0.49 0.59 405 0.26 0.38

ED9 (0.18-0.20) 556 0.48 0.57 262 0.24 0.34

ED10 (LT 0.20) 6,524 0.50 0.61 1,852 0.26 0.38

N.: number; D.land: dry land; P.land: paddy land.

Fig. 8. Fig. 8. Statistical distribution and pixel numbers of 
NDVI(N) at 21 elevation difference (ED) grades in the eight UAV 
control flying areas for the two land use types.“–” represents the 
maximum and minimum of the data set; the upper and lower 
boundaries of the box represent the upper quartile (75%) and the 
lower quartile (25%), respectively; and the rectangle represents 
the median of the data set.



Lou H., et al.268

NDVI(P) value is in the range of 0.47–0.61. The ED 
grade of 0.12–0.14 m is the threshold in dry land, i.e., 
there is more P in the soil at ED grades higher than this 
threshold. In paddy land, the trend of the distribution of 
NDVI(P) values is markedly different than that in dry 
land, i.e., there are more pixels with high values located 
at low ED grades. The average NDVI(P) value in paddy 
land is in the range of 0.31–0.43. This means there is 
more soil P in paddy land with low ED grades, similar 
to the distribution law of NDVI(N). The threshold 
of NDVI(P) distribution variation in paddy land is  
0.08–0.10 m; however, the magnitude of the variation is 
smaller than that of NDVI(N).

At the microtopographic scale, paddy land with low 
ED has high soil N and P concentrations, while land with 
higher EDs has less soil N and P concentrations (Figs 8 
and 9). This result is consistent with the conclusions of 
previous studies that found that topography influences 
the concentrations and spatial distributions of both soil 
N [55] and soil P concentrations [56]. Different from 
previous studies, we used topographic data with higher 
resolution, and the methods we used to survey the status 
and concentrations of soil N and P at 21 ED grades 
were more efficient. At the same time, the influence 
of temporal accumulation should also be considered 
at this scale. Topography can directly influence runoff 
confluence, even in flat agricultural areas, and this 

changes the destination of resolved soil nutrients such 
as nitrate nitrogen, ammonium nitrogen, and Olsen-P 
[14]. Soil erosion also exists at the microtopographic 
scale, and sediments, together with adsorbed nutrients, 
are transported along the slopes of small EDs [14, 57]. 
The influence of temporal accumulation should also be 
considered at the microtopographic scale because slight 
changes transmitted from the external environment 
affect soil N and P concentrations, e.g., routine 
irrigation or moderate rainfall. Precipitation and soil 
erosion processes should be considered in relation to 
soil nutrient loss. In dry land, soil P was found to have 
a different spatial distribution across the ED grades to 
N. This was because dry land is irrigated by rainfall, 
and P has stronger adsorption capability than N; thus, it 
cannot be transported easily by water flow derived only 
from rainfall.

Remote sensing data derived from space (GF-2) and 
aerial (UAV) platforms were used synergistically with 
in-situ experimental data in this study. This generated 
some uncertainty in the results because of the different 
scales of these data and precision loss from data 
processing. Scale issues, which include upscaling and 
downscaling processes, are always intractable problems 
inherent in remote sensing science [58]. Remote 
sensing data of diverse land surface information can be 
collected on different scales. To present a simple and 
easily understandable result, we processed multiscale 
remote sensing data to a single scale, which may have 
resulted in some loss of information regarding the land 
surface. For example, in this research, the satellite 
remote sensing data were downscaled, whereas the UAV 
and in-situ experimental data were upscaled. However, 
the synergistic use of multisource remote sensing data 
provides a new method to explore the relations between 
microtopography and soil N and P. Undoubtedly, 
some elements of this study could be improved. At 
the microtopographic scale, to explain the effects of 
topography on soil N and P, researchers should focus 
on the remolding of runoff confluence, soil erosion, and 
sediment transport to topography. 

This research can be a very good guide for other 
studies on small-scale soil N/P concentrations. The 
high-resolution topographic data from the UAV and 
the two new indices (NDVI(N) and NDVI(P)) used 
in this study have implications regarding soil nutrient 
management, prevention of nonpoint source pollution, 
and development of precision agriculture. Furthermore, 
this method will exhibit better performance when 
kept away from fertilization time because this can 
minimize the influence of fertilization on quantifying 
the relationship between microtopography and N and 
P. UAV has advantages in that it can be used to obtain 
targeted data with high spatiotemporal resolution both 
rapidly and economically [35]. When such data are 
used in combination with the two proposed indices, the 
N and P loss paths can be established and CSAs can 
be detected. Once CSAs have been determined, the 
paths of nonpoint source pollution can be detected and 

Fig. 9. Statistical distribution and pixel numbers of NDVI(P) at 
21 elevation difference (ED) grades in the eight UAV control 
flying areas for the two land use types.“–” means the max and 
min of the data set; the upper and lower of the box represent the 
upper 75% and the lower 25%; and the rectangle represents the 
median of the data set.
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pollution prevention will become much easier. Precision 
agriculture can also benefit from this method. The soil 
N and P concentrations in each pixel and at every ED 
grade can be fully comprehended based on the two 
new indices; thus, this new method can provide better 
understanding regarding the process of soil nutrient loss 
and the detection of CSAs.

Conclusions

This study explored the relationships between 
microtopography and soil N and P concentrations by 
incorporating UAV and GF-2 remote sensing data. The 
results revealed that more pixels have high NDVI(N) 
values distributed at low ED grades in paddy land, 
whereas the opposite is observed in dry land. This 
means there is more N in the soil at low ED grades 
in paddy land and high elevation difference grades in 
dry land. Compared with NDVI(N), there are more 
NDVI(P) pixels with high values at high elevation 
difference grades in dry land and more pixels with 
small values at low elevation difference grades in paddy 
land. The results indicate that microtopography can 
redistribute N and P spatially within the soil because it 
changes the direction of flow from irrigation and rainfall 
and of sediment flow from erosion. Furthermore, 
NDVI(N) and NDVI(P) were found to have a positive 
correlation (R2 = 0.75), suggesting that N and P 
accumulate simultaneously in the soil of agricultural 
land. The findings of this study highlight the efficacy 
of a new method that could be used both for preventing  
nonpoint source pollution and for elucidating processes 
relevant to soil nutrient management and precision 
agriculture. 
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